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Abstract

This report presents a new way to control the tip position of single-link flexible arms when friction
is present in the joint. In order to minimize the influence of the nonlinear components of this friction,
the control scheme is composed of two nested loops: an inner loop that controls the motor position, and
an outer loop that controls the tip position.

It is demonstrated that proper design of the inner loop of this control scheme eliminates the effects
of friction in controlling the tip position, and may significantly simplify the design of the tip position
controller.

Three control schemes are proposed for the outer loop. All of them are based on an hybrid feedforward-
feedback control scheme. The first and second schemes use only tip position feedback while the third
one uses sensing of positions at several points of the beam.

Performances of the three schemes are compared under the following disturbances: a) motor position
perturbations, b) unmodelled dynamics, and c) changes in the payload.

Experimental results are presented for the two arms described in the Part I; the three tip position
control schemes are compared in both arms; and, finally, conclusions are drawn.
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1. Introduction

Very little effort has been devoted to the control of flexible arms when static and dynamic frictions
are present in the joints, in spite of this being common in practice, as was mentioned in the General
Introduction (see the first report of this serie of three). The effects of friction are especially important in
lightweight flexible arms, or in flexible arms moving at low speeds and accelerations.

In this second report, control of single-link flexible arms with friction in the joint is studied. A general
control scheme is proposed in Section 2 to compensate for it. Existing methods to control flexible arms
[1-6] are based on explicit control of the tip position. In these schemes, the controller generates a control
signal, which is the current (after being properly amplified), for the DC motor that drives th.o arm. We
propose here a new method which is based on the simultaneous control of the joint motor position and
tip position, and the implementation of two nested closed loops: an inner loop that controls the motor
position and another outer loop that controls the tip position. In our scheme, the tip position is controlled
by using the motor position instead of the current as control signal. Friction is compensated in our scheme
by using controllers of high gains in the inner loop. It is demonstrated that this can be done even in the
case in which the arm is non-minimum phase.

Section 3 describes the design of the inner loop controller. Compensation of Coulomb friction and
the coupling torque between the motor and the beam is carried out. It is stated that, in many cases, the
dynamics of the motor position control loop is negligible compared to the dynamics of the beam (second
submodel in Section 2 of Part I). This allows us to simplify the design of the outer loop. Section 4
presents the experimental results obtained when closing the inner loop in the cases of two lumped-mass
flexible arms that we have built in our laboratory: a single-mass arm, and a two-mass arm (they were
described in Part I). Because the first arm is minimum phase and the second non-minimum phase, all the
possible cases of single-link flexible arm control are included in our experiments.

The outer control loop is described in Section 5. Three control schemes for the tip position tre
proposed in this report: two schemes based on classical frequency domain techniques, and a third scheme
based on state-space methods. All three schemes combine a feedforward term with a feedback controller.
It is shown that, with this hybrid feedforward-feedback scheme, high position accuracy may be achieved
for the tip of a flexible arm. The feedforward term is designed to drive the motor in such a way that the
tip of the arm approximately follows the desired trajectory. The closed-loop controller compensates for
the deviations of the tip from the nominal trajectory. If the feedforward term is properly designed, these
errors are small, allowing us to use simple controllers. The feedback control law is implemented in the
two first schemes by sensing the tip position. The feedback law of the third scheme uses sensing of the
position in several intermediate points of the arm. The second method exploits a special feature that the
general control scheme proposed here exhibits: the first (lowest) natural frequency of the beam, which is
the dominant one, may be easily cancelled by closing a positive feedback loop of the tip position.

Are presented in Section 6 experimental results of tip position control, that were obtained applying
the three methods to our two flexible arms. Performances of the three schemes are compared in Section
7 under the following disturbances: a) motor position perturbations, b) unmodelled dynamics, and c)
changes in the payload are present.

Finally, conclusions are drawn in Section 8.
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2. General Control Scheme

2.1. Description

As it was mentioned in the introduction, there are many applications in which the friction must be
taken into account when controlling a flexible arm. Only when friction torque is much smaller than beam
torque, can it be ignored. This happens in cases such as very large flexible structures, or direct-drive
arms designed for minimum friction.

Several methods have been proposed to minimize the effects of friction in the control of DC motors,
that can be directly applied to the control of rigid arms. The simplest method is to use a high-gain linear
feedback. This is based on the property that the robustness of a closed loop system to perturbations and
changes in its parameters is improved when the open loop gain is increased (Kuo [7]). This has been
used by Wu and Paul [8], for example. The main limitation of this method when applied to rigid arms
is that the nonlinearities will dominate any linear compensation for small errors tending to give small
permanent errors in the positioning. More significant limitation appears when this is applied to control of
flexible arms, which are typically non-minimum phase systems. This means that a high-gain tip position
loop leads to system instability (this is consequence of having the system zeros in the righ half-plane).
Consequently, this method is unsuitable for flexible arms.

Another method for compensating friction is the use of force sensors and the mechanization of a
feedback loop around the motor torque. Examples are Handlykken and Turner [9], and Cannon and
Schmitz [1] (the latter is an application to flexible arms). Finally, other methods are based on the use of
a calculated compensation term which is added to the current of the motor in order to compensate the
friction torque. Examples are Walrath [10] that used a model of the friction in order to predict its value,
and more recently Canudas et al. [11] that used a parameter identification procedure (a recursive least
squares algorithm) in order to obtain this term.

In this section we propose a new simple control scheme to reduce the effects of the friction. This
scheme is based on a modification of the classical high gain position closed loop procedure, in order to
allow its application to flexible arms. This method does not need extra sensors (to measure the torque of
the motor) and allows much simpler calculations than other compensation methods. Our control scheme
also incorporates a constant feedforward term in order to remove the remaining steady state errors because
of the Coulomb friction. This method practically eliminated friction nonlinearities in our flexible arms.

In order to reduce the effects of the friction, the basic control scheme of Figure 1 is proposed. This
scheme has two variables: motor and tip positions: 0,, and 9 respectively (using the nomenclature defined
in Figure 1 of Part I). These two variables are controlled by two nested closed loops, and two different
controllers (R(s) and a(s)) are used, each one being designed separately according to different criteria. In
Figure 1, r(s) is the motor open-loop transfer function between the current and the angle of the motor. It
is easy to show that m(s) always has all its poles and zeros in the left half-plane. The open-loop transfer
function of the flexible beam gn(s) relates the angle of the tip of the beam to the angle of the motor.
gn(s) has all its poles in the left half-plane but may have (for arms with more than one vibrational mode)
some zeros in the right half-plane (non-minimum phase system). F(s) is an open-loop term designed in
conjunction with R(s).

Existing control schemes for flexible arms basically generate a current for the DC motor as function
of the tip position error and/or its derivatives. If we try to compensate for friction in these schemes,
by increasing the gains of the controller, the closed-loop system becomes unstable because of the right
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half-plane zeros of g,(s). But in our proposed scheme, because m(s) is minimum phase, the gains for the
inner loop can be arbitrarily increased (using an appropiate controller a(s)) without making the system
unstable. So, intuitively, the high gain inner loop that controls the motor position makes the system
insensitive to the friction and, then, a second outer loop may be designed to control the tip position. This
second loop cannot have a high gain because gn(s) is non-minimum phase, but now it does not matter
because the friction effects have been nearly removed by having closed first the high gain inner loop.

2.2. Feedback compensation (sensitivity analysis)

The previous ideas justify intuitively the interest of using our control scheme. This subsection gives
analytical proof of it (Rattan et al. [12]). The analysis carried out here is quite straightforward and will
give a quantitative idea of how much the robustness to friction is increased by using our nested multiple
loop scheme. In order to do this comparison, a typical control scheme like the one shown in Figure 2 will
be used (Cannon [1], a.e.). The sensitivity characteristics of this system will be taken as representative
of the exisung methods because they are based on controlling the tip position using only a controller that
generates a command for the current of the DC motor. So the sensitivities of all them are of the same
order of magnitude. Two comparative analyses will be carried out: one checking the signal-to-noise ratio
(considering that the Coulomb friction is the noise), the other checking the sensitivity to variations in the
dynamic friction coefficient.

In order to do these comparative analyses, we first express the state space control scheme of Figure 2
in terms of its equivalent transfer functions.

Assume that the plant is represented by the state space equations:

.t(t) = A . x(t) + B . it(t), (1)

O(t)=C.x(t); C= ( 1 0 0 ... 0 (2)

the system being of dimension h. it is the part of the current given by the controller and actuator, which
is applied to the linear part of the model. The remaining quantity of i(t) is used to compensate for joint
friction. Assume also that the controller is a row vector of dimension h of the form:

where 1, is a vector of dimension i - 1, and kI1 is the coefficient corresponding to the feedback of the
tip position error (error in the first state).

Differentiating the state space equations h - I times we get:
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C-AX(°)AJ (Efl
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Observability Matrix

0o o o.. 0 0
CoB 0 0 ... 0 0

C.A.B C-B 0 ... 0 0IiJ (4)

C.-A" - 2 . B  C.A - - B  C.A - - B  .. C.B 0 i,-

and if the system is observable (which is true in all the models of flexible arms), then the states x of the
system may be reconstructed from measurements of the input ij and the output 0,, using a linear law of
the form:

x(s) = P(s) .O(s) + Q(s) . ij(s) (5)

where P and Q are polynomial in s column vectors. This last equation is easily obtained from (4) by
inverting the observability matrix. Substituting this ix the scheme of Figure 2, substituting also the state
space equation of the plant by gn(s) r m(s), and operating we get the equivalent transfer function scheme
shown in Figure 3. In this figure:

F*s re(s), g,(s)F(s) = P(s) m(s) . g.(s) + Kc . Q(s)' (6)

and

R(s) =-Kc . P(s) . m(s) . gn(s) + Kc " Q(s)
r(s) gn(s) (7)

Now, the comparative analysis may be done between the schemes of Figures 1 and 3.

2.2.1. Signal-to-noise ratio analysis

The signal-to-noise ratio of the output of a system is defined (Kuo [7]) as:

Output due to signal

Output due to noise'

and is a measure of the insensitivity of the system to perturbation signals (in this case Coulomb friction).
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The comparison of the ratios of the schemes of Figures 1 and 3 is done here, for the same levels of input
,0, and perturbation E (which is added to the current of the motor).

Operating the nested double loop scheme we get from Figure 1 that:

0,(s) = M(S) g.( - ~s) r(s) g,-(s) + c(s)). (9)
1 + r(s) a(s) + gn(s) , m(s) . R(s) . a(s)

And the signal-to-noise ratio for this scheme easily follows:

po,, = R(s) .a(s) .F(s). (10)

We get from Figure 3 that

,.(s) +r(s) g,.(s) • (R(s). F(s)O,,(s) + ((s)) (11)
1 + g.(s), rn(s), R(s)

Po,., = R(s) . F(s) = k, 1 . (12)

Comparing both results, expression (10) may be made very large because the gains of controller a(s)
may be designed arbitrarily high. But k,1 in expression (12), and all the parameters of R(s) in general,
are limited by the stability margin because the system is non-minimum phase. The gains of R(s) of
Figure 1 are limited for the same reason too. Therefore, expression (10) may be made larger than (12)
in general, just by choosing properly the gains of the controller of the inner loop. In practice, the gains
of the inner loop will be limited by the saturation of the amplifier, unmodelled high frequency dynamics,
or discretization of the signals when using digital controllers. But in general case these limits are much
larger than the ones imposed by the non-minimum phase characteristic.

2.2.2. Sensitivity to the dynamic friction coefficient

Dynamic friction is another component of friction. It is normally assumed to be linear, and it is in-
cluded in the model of the plant. Often, however, the dynamic friction coefficient changes noticeably
dcpending on the sense of rotation of the motor (see Figure 8 of the first report), or the position of the
rotor relative to the s:ator (confronted poles), etc. Performing the sensitivity analysis of both systems to
changes in the dynamic friction coefficient, we show here that the robustness to this parameter may be
significantly improved also using our nested double loop scheme.

The sensitivity of a system, whose closed-loop transfer function is L(s), to changes in a parameter it,
is defined (Kuo [7]) as

OL(s) itSt.., = l "L~s--' "(13)

Opt L(s)

The motor submodel is described by (sec Subsection 2.2 of Part 1):
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d2 0m d~rm
K. i =J .!to m +V. m + C,+CF (14)

dt2  dt

Ct = " (9 + h,+l - 0,, + hn+2 • Tn (15)

In order to do this analysis, we assume that CF and T, are 0; and, from (14),(15), we express r(s) in
the form:

K
rn(s) = s2 + V., (16)

which is the typical transfer function of a DC motor with the exception of the term \(s), that represents
the coupling between the beam and the motor. This allows us to characterize the influence of the dynamic
friction coefficient V in the general transfer function.

Carrying out some calculations, we obtain that the sensitivity to V of the closed-loop system of Figure
I is:

SLY -S. V (17)(1 + a(s) . m(s) . (I + R(s) • g,(s))) . (J . s2 + V. s + X (s))(

The sensitivity to V of the system of Figure 3 is:

SLV =-S. VS.v=(I +R(s) • me(s),- g,(s)) . (J. s2 + V. s + X((s))" 8

Comparing both sensitivities, expression (17) will normally be significantly smaller than (18) because
a(s) • (1 + R(s) • g,(s)) >> R(s) • g.(s). Notice again that the gains of R(s) and R(s) are bounded by a
stability margin, but the gain of a(s) may be increased arbitrarily. Consequently, scheme of Figure 1 is
more robust in general to changes in the dynamic friction than the scheme of Figure 3, by a factor of
approximately a(s).

2.2.3. Comparison of the characteristic equations

The previous analysis gives a quantitative justification of how the robustness of the system is increased
using the two nested loops schemc. A bceacr 4ualita'"ve understanding of how the nested loops modify
the stability of the system, allowing higher gains, may be obtained just by looking at the characteristic
equations of the two systems.

In the standard control scheme, the robustness depends on /(s), and the characteristic equation is

1 + R(s) ms) • gn(s) = 0;
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or, substituting R(s) by (7) in this equation:

& . P(s)1+ m(s).- g'()IK (s) = 0, (19)

which expresses the characteristic equation in terms of me feedback gains. Notice that, in this last
equation, the right half-plane zeros of gn(s) limit the gains K, and, consequently, the gains of R(s).

In the proposed scheme we have, from equation (10), that the signal-to-noise robustness depends on
the product a(s) R(s); and, from equation (17), that the sensitivity depends on this product and also
depends on an a(s) term. The characteristic equation of the system is:

1 +a(s). m(s) • (1 +g.(s).R(s)) = 0. (20)

and, if the factor I + gn(s) -R(s) had all its zeros in the left half-plane, then the gains of a(s) could be
made arbitrarily large. Because gn(s) is stable, there always exists an R(s) of moderately low gains that
makes the mentioned factor have all its zeros in the left half-plane (this may be justified from the root
locus plot of gn(s) R(s)) and, consequently, the product a(s) R(s) may be arbitrarily large improving the
robustness of the system.

2.3. Feedforward compensation

The scheme of Figure 1 overcomes the stability problems which are caused when implementing high
gain feedback loops in non-minimum phase systems in order to increase its robustness to friction. But
still small steady state errors may be present.

A feedforward term can be added to the current of the motor to remove this. This term is a constant
one that changes its sign depending on the sign of the motor velocity. This term is used to compensate for
an ideal Coulomb friction torque, and the value used here is the averaged one given by the identification
method described in Section 5 of Part I.

3. Motor Position Control Loop

3.1. Description and Design

A main objective of the inner loop design is to remove the modelling errors and the nonlinearities
introduced by the friction by means of very high gains. Another important goal is to make the response
of the inner loop significantly faster than the response of the outer loop and, of course, very much faster
than the motions produced by the vibrational modes of the arm. This will simplify the design of the outer
loop. In fact, if the inner loop is relatively fast we can substitute for the inner loop of Figure 1 a block
with unity transfer function. This allows us to study the flexible arm just as a system of g,(s) transfer
function whose control signal is the angle of the motor.

In order to design the controller of the inner loop, three approaches may be used. provided that a



feedforward term is used to compensate for the Coulomb friction:

1. Design a regulator to control the linear part of the motor submodel (16). This part is minimum
phase but may be quite complex, even having zeros in the imaginary axis.

2. Consider the coupling torque between the motor and the beam just as another perturbation, and
design a regulator to control the reduced equation obtained from (16):

d2 Om(t) d~m(t)
K. i(t) = J. t) V. d- (21)

3. Design a regulator to control the system represented by (14),(15), but using another feedforward
term to compensate for the coupling between the motor and the beam. This may be estimated from
measurements of a strain gauge installed in the basis of the beam, or can be calculated from the
measurements of the angles of the motor and the tip, by using (15).

We use the third approach because it simplifies the design of the inner controller, and because we
want explore the posibilities of estimating the coupling torque from measurements of the motor and tip
position. Because the control is robust, an approximate estimation of this torque is adequate. The errors
produced by this approximation will be compensated by the high gain inner loop. These points will be
developed in the next subsection, and illustrated by the experiments of Section 4.

Assume in what follows that we are able to calculate by some method the coupling torque C, between
the motor ard the beam. Then the system may be approximately decoupled and linearized by adding to
the current the following term:

i,(t) = (CI(t) + CF(sign of motor velocity))/K. (22)

Then the motor transfer function used to design the controller is reduced to the typical one for DC
motors:

Ore(S) _ K/J 23OM.s = I = h(s). (23)
is s, (s + v/r)

A digital controller of the form shown in Figure 4 is suggested in order to get a very fast response
without overshooting. This figure represents the inner loop to control the motor position, where 0,,, is
the commanded motor position, and a(z) and b(z) are phase-lead controllers. The limits in the gains of
a(z) (resembling a(s) of Figure 1) depend upon the current limit of the amplifier of the DC motor as well
as beam deflection limits. In the cases where the coupling torque is high, it is necessary to take into
account in the design the current drained by the coupling 9o.npensation term. This will lower the value
of the maximum current that is available for the feedback control of Figure 4. A delay term is included
in this scheme in order to take into account the delay in the control signal because of the computations.

3.2. Decoupling term

Coupling torque C, can be exactly compensated by using expression (15), if measurements of all the
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angles 0.,01,...,0. are available (we assume in what follows that T. is 0). But often, we only have
measurements of the motor angle 0.. and the tip angle 0. Under these circumstances, the coupling torque
has to be approximated from an expression

C't(s) = C(s) . (0.(s) - On(s)), (24)

where C(s) is a transfer function to be designed.

If we denote

C(s) = tp(s) ,,(s); (25)

then the C(s) that exactly compensates the coupling torque can be calculated from the expression

C(s) = - gn(s) (26)

But C(s) usually has its poles in the imaginary axis. This kind of transfer function is difficult to implement,
especially in a computer, because discretizations easily produce unstable compensators.

The simplest approach is to assume that C(s) is a constant. Selecting the adequate value for this con-
stant, compensator (24) cancels exactly the low frequency behavior of Ct (up to the first natural frequency
of the beam). Notice that, in this case, Ct(s) and Cr(s) have the same poles (resonant frequencies), they
only differ in their zeros.

If we want to improve the compensation at middle and high frequencies, more complex transfer func-
tions C(s) can be tested. Coefficients of C(s) may be obtained from optimization techniques (Feliu [131)
that minimize the error between the spectrum of the coupling torque ant its estimation (in this case, the
error between TI(s) and C(s) . (1 - g,,(s)).

4. Motor Control Experimental Results

The validity of the control scheme proposed in Sections 2 and 3 is tested here. We show that the
inner loop removes nearly completely the nonlinear effects of Coulomb friction and time-changing dy-
namic friction. We show too that the assumption of the dynamics of the motor control loop being faster
than the dynamics of the beam is normally achieved. The two lumped-mass arms described and modelled
in Section 6 of Part I are used here: a single-mass flexible arm, and a two-mass flexible arm.

4.1. Single-mass flexible arm

The inner loop incorporates compensation terms for the Coulomb friction and the coupling between
the motor and the beam. In the case of the single-mass flexible arm, this coupling may be expressed
in terms of the difference between the angle of the motor and the angle of the tip of the beam. Motor
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control is built according to the scheme of Figure 4, where the parameters estimated in Section 6 of Part
I are used for the compensations. The sampling period of this loop is 3 msec.

An optimization program was developed to get the best controllers using the model obtained for
the motor. The settling time (considering an error less than 1%) of the response of the motor to step
commands in the motor angle reference input was minimized. Step inputs were assumed as references
for the inner loop because, in order to get a good control action, the command angle for the motor should
experience very sharp changes. In fact in our experiments the motor angle varied much faster than the
angle of the tip. The following constraints were used in the design:

1. bo - bt = 1: in order to guarantee the zero steady state error of the motor position response.

2. ao - a," = 15: in order to limit the peak of the current of the motor. It was dimensioned taking into
account that a step of amplitude 400 mrad. should produce a peak of 6 amps.

3. The response cannot exhibit any overshooting.

The optimum controllers were:

a(z) = 17.442 - 2.442 • z- (27)

b(z) = 6.667 - 5.667. z- . (28)

The coupling torque compensation term is given by (equation (34) of Part I):

Cf = 0.674 lb.in./rad. • (O,, - 01). (29)

Figures 5 to 12 show the position responses, to step commands, of the motor loop closed with these
controllers, for different values of the Coulomb friction feedforward compensation term (motor-beam
decoupling term is being used). These responses were obtained keeping the tip of the arm fixed in the
zero angle position. This means that, in the steady state of this experiment, there is always a coupling
torque Ct caused by the bending of 50 mrad. existing between the angle of the motor and the angle of the
tip. Analyzing permanent errors in these figures, we conclude that the best compensation term is obtained
assuming an equivalent Coulomb friction of a value between 0.1318 amps. and 0.1367 amps. The value
estimated from the frequency method of Section 5 of Part I was 0.132 amp., which sustantially agrees
with the values obtained from this closed-loop motor experiment. The estimates of Coulomb friction
obtained from standard temporal methods were 0.161 amps. for positive velocities, and 0.152 amps. for
negative velocities (see Figure 8 of Part I). Figures 11 and 12 show that bad compensation is achieved
using these values, and that, therefore, the estimate of Coulomb friction given by our method is more
accurate. When the Coulomb friction compensator has a value higher than the real value of the Coulomb
friction (Figures 10-12), a permanent ripple appears as a result of using excessive compensation.

Notice that a transient ripple appears in Figures 5-12. This is because of the method of estimating
the actual velocity of the motor, used to calculate the sign of the compensation term. This estimation is
done by substracting the motor position value of the previous sample from the value of the actual sample.
It produces a delay in the estimate of the sign of the velocity, causing this transient effect. This effect
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may be easily avoided defining a limit value. If the difference between the actual motor position and
the previous one is larger (in absolute value) than this limit, then the general compensation algorithm
is applied. If it is smaller, then the algorithm looks at the error between the desired and actual motor
positions, and the sign of the Coulomb friction compensation is the sign of this error, in order have it
corrected. The value for this limit was obtained experimentally. Good results were achieved using a limit
of 2 mrad.

Figure 13 shows the comparison between the simulated response, using the obtained optimum controller
with all the compensation terms, and the experimental one. The above limit value of 2 mrad was used.
Both responses are very close and demonstrate the validity of the parameters estimated in Part I, and of
the compensation terms obtained from them. These responses were obtained keeping again the tip of
the arm fixed in the zero angle position. The coupling torque C:, caused by the bending of 200 mrad.
existing between the angle of the motor and the angle of the tip, is very noticeable. The zero steady state
error shown for the experimental data demonstrates the effectiveness of compensation achieved for the
Coulomb friction and for the coupling of the motor with the beam. The settling time achieved for the
motor is 33 msec. which is significantly faster than the dynamics of the beam. This allows us to assume
that the equivalent transfer function of all the inner loop is 1, which simplifies the design of the outer
loop in the next sections.

Figure 14 shows the response, when the compensation friction term is removed, of the same experi-
ment of Figure 13; and Figure 15 when the decoupling term is removed. These results show that these
compensation terms do not improve significantly the dynamic response of this system, but they practically
eliminate the steady state errors.

4.2. Two-mass flexible arm

We use the same motor here as in the previous case. Then the dynamics of the motor submodel are
the same as in the single-mass arm, with exception of the coupling torque. This torque is represented
now by equation (40) of Part 1:

Ct = -6.159/91 + 2.053 9 2 + 4.106 9m. (30)

Consequence of all this is that the same controllers a(z) and b(z) of the previous arm may be used here,
as well as the same Coulomb friction compensation term. Only the decoupling term has to be redesigned.
We will consider here two cases: a) we only have measurements of the tip and motor positions 01 and
0,,; b) we have measurements of all the positions 91, 92 and 9.

4.2.1. Decoupling from tip position measurements

From expression (30), and taking into account the dynamic model of the beam (equation (39) of Part I),
we get that the coupling torque may be expressed as a function of the measured variables:

Ct(s) = 2.05274. 1591.625 +2 • (- Gm(S) - 02(S)). (31)1682.575 + s 2

We implemented a decoupling term using this expression, and we were unable to compensate for
the second natural frequency of the beam. Moreover, depending on the discretization method used for
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this decoupling compensator, sometimes the system became unstable. This supports the statement of
Subsection 3.2. about the difficulty of implementing such decoupling terms when the transfer function
C(s) has imaginary poles.

We try now to decoupling the motor from the beam by using the simplest compensator: C(s) = Co.
We use the characteristic Ct(s)/Om(s) instead of C, in the following analysis. This can be obtained from
(31) substituting 02(s) by g2(s) O m(S). If we use the term Co . (Om(s) - 02(S))/Om(s) as an approximation
to the above characteristic, where Co is chosen in such a way that steady state differences are removed,
then this term has the same poles as CI(s)/Om(s), and they just differ in the zeros. These differences only
affect to the behavior at frequencies higher than the first natural frequency. For our arm, this decoupling
term is:

C1(t) = 1.941 • (0m(t) - 0.(t)). (32)

The plot of the magnitude characteristics of the frequency responses of both transfer functions is shown
in Figure 16, and illustrates these statements.

The same closed-loop control experiment was done here as in the first example: the motor was moved
with step motor position reference commands while the tip of the arm was kept fixed in the zero angle
position (the middle mass was left free). The experimental response of the inner loop, with all its com-
pensating terms, is shown in Figure 17. We observe that this response is still significantly faster than
the dynamics of the beam (the settling time for the 5 % position error is about 60 msec.), in spite of
having now considerably more inertia to move (higher coupling torque). We can notice also that the
steady state error is small again, and that a small ripple is present because of the uncompensated high
frequency coupling dynamics. The frequency of this ripple is about 5.8 Hz. This corresponds to the range
of the mismatching frequencies of Figure 16 in the neighbourhood of the second resonant frequency (6.3
Hz.). Figure 18 shows the response without the decoupling compensator. We notice again that the use of
this term does not affect the temporal response of the motor (probably because of the high gains used in
the controller a(z)), but its use improves noticeably the steady state, removing the permanent error that
otherwise appears in Figure 18.

4.2.2. Decoupling from intermediate measurements

If we use the Selspot camera, we are able to simultaneously track several LED's. Placing two LED's,
one on each lumped mass, we can use expression (30) in order to exactly decouple the motor from the
beam. The response of the motor position control loop, using this decoupling term, is shown in Figure
19. This result is sustantially better than the one obtained from only measuring tip and motor positions.

14



5. Tip Position Control Loop

5.1. General Scheme

5.1.1. Basic Concepts

This section studies the control of the tip position. Sections 2 to 4 showed that the use of adequate
compensators and high gain controllers in the inner loop allows us to remove the effects of the friction.
Once this has been achieved, the inner loop may be represented, for tip position control purposes, as a
linear system of constant coefficients whose input is the desired angle of the motor 0,,,, and the output is
the actual angle of the motor 0re.

Another important result attained by closing the inner loop is that, because high gains are used in the
motor position controller, the response of this inner loop may be quite fast compared with the dynamics
of the mechanical beam. This means that we can assume in many cases that this inner loop may be
represeLr..d by a unity transfer function. This is especially true in lightweight flexible arms. When the
reaction torque of the flexible arm is important compared with the motor input torque then this assumption
no longer remains true. But it still may be used as an approximation in the design of the tip position
control loop, and correction terms may be added later in order to compensate for the delays that appear
in the response of the servocontrolled motor.

Assuming the previous statement, the only dynamics to take into account are those of the beam
submodel, which are given by the transfer function g,,(s) of Figure 1. This transfer function relates the
angle of the motor (input) with the tip position (output). This assumption allows us greatly simplify the
design of the tip controller and to relate in an easy way the commanded trajectories with the mechanical
limitations of the beam, as the maximum stress in the structure for example. These two facts suggest that
the two nested closed loops scheme here proposed is of general interest, and may be useful even in the
case where the friction in the joints is not important.

Several approaches may be used to control the tip position, either from state space or frequency domain
techniques, or either using feedback or feedforward controllers.

Feedforward terms have been often used in the control of rigid arms : Craig [ 14], Khosla and Kanade
[15] a.e. The feedforward term generates, in these schemes, a torque (current) to drive the arm that
is function of the desired trajectory. The feedback control loop compensates for the tracking errors
produced by perturbations. Feedforward functions may be generated off-line previous to the motion, but
it is desirable to be able to generate them in real time in order to face unexpected changes in the trajectory
as for example happens in robots with sensors. Feedforward functions have been used to drive flexible
structures without exciting the resonant modes (Meckl and Seering [161 a.e.), but they are complex and
difficult to use for real time control, especially when several resonant modes have to be considered.

The other approach is the design of feedback controllers to actively damp the vibrations produced
when moving these flexible structures. Several methods have been proposed and experimental results are
available. Examples are Cannon et al. [1], Matsuno et al. [2] and, recently Kotnick et al. [17] . Most
of these methods are based on state space techniques. They use optimal control and normally need to
reconstruct from tip and motor measurements some states of the system by using observers or filters.

A simple general scheme is proposed here that combines a feedforward term with a feedback controller.
Three different feedback schemes are described here. It is shown that, with our simple scheme, high
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positioning performances may be achieved for the tip o: a flexible arm. In this scheme, the feedforward
term is mainly responsible for driving the motor in such a way that the tip of the arm follows the
desired trajectory. The closed-loop controller compensates for the deviations of the tip from the nominal
trajectory. If the feedforward term is properly designed, these errors will be small allowig us to use very
simple controllers to compensate for them.

The feedforward term is studied in Subsection 5.2 neglecting dynamics of the inner loop. A correc-
tion term is also proposed in this subsection to take into account the dynamics of this loop. Feedback
controllers are described in Subsection 5.3.

5.1.2. Error Analysis

The scheme proposed here combines a feedforward term very simple to generate, with a simple feedback
controller. We show that we can get controls that provide high dynamic performance by using some sim-
ple rules from the classical frequency domain control methods. Combined feedforward/feedback control
schemes have been used before for flexible structures, as for example Dougherty et al. [18], that used
acceleration feedforward in the pointing control of the Space Telescope, or recently Gebler [19], that used
an approximate feedforward term to control a two degree of freedom flexible arm. Our feedforward term
differs in that it uses motor angle rather than torque as the generated signal. Thus the feedforward term
may be defined as the inverse of the dynamics of the beam (in the minimum phase case). This term is
simpler than the terms generated in the above mentioned methods, and can be easily computed in real
time.

Figure 20 represents this scheme. We have included in the arm model two kinds of perturbations, one
in the angle of the motor and other in the angle of the tip. The first one (bl (s)) models residual errors in
the positioning of the motor because of the Coulomb friction, residual errors in modelling the dynamics of
the motor (because of changes in the dynamic friction for example), errors because of the assumption that
the transfer function of the inner loop is equal to one, and even errors because of unexpected permanent
bending in the beam. The worst errors are those due to the Coulomb friction and the permanent bending
of the beam because they cause steady state errors. This is modelled by a step input: 61 (s) = 61 Is. The
second perturbation (62(s)) models deviations of the tip from the desired trajectory because of external
disturbances. Perturbation 62(s) is modelled in this case by a polynomial in s because it is a transient
error. Finally, notice that in Figure 20, gn(s) = g,,(s)/gM(s).

5.1.2.1. Discretization.

The system of Figure 20 is a hybrid system in the sense that it has analog and discrete components.
In order to simplify the design, a discretization of the analog blocks is done, and a digital controller in
the z - plane is designed. The discretization is done using the residues formula for continuous-discrete
equivalent sampled systems with generalized holds (Feliu [201, e.g.):

G(z) = X (z'). Z [G(s) • X2(s)/X 3(s)I, (33)

where G(s) is the transfer function of the continuous plant, and X 1, X 2 and X3 are polynomials that
characterize the hold and its interpolation properties.

This way of discretization is preferred to others (Tustin transform for example) because it gives an
exact matching between the discrete and analogical signals at sampling instants (VanLandingham [21],
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e.g.).

The following assumption is made: if we sample the angle of the motor 0, with period T, then this
signal may be approximately reconstructed from its samples by interpolating between the samples by
straight lines. It can be shown that it is equivalent to reconstruct the signal from its samples using a first
order non-causal hold. In this case:

X(z - 1) = z. (1 - z-) 2 , X2(s) = lT, X 3(s) = s2,  (34)

and g,,(z) is obtained from (33) using this hold and making G(s) = g,,(s). Transfer function A(z) is the

sampled-data equivalent transfer function of the motor ih(s) after having removed the Coulomb friction

and the beam-motor coupling by using compensating terms. A zero order hold is used to obtain this
discrete transfer function from expression (33). Now G(s) = in(s), and:

Xt(z - 1) = 1 - z 1 , X2 (s) = 1, X3(s) = s. (35)

The partial scheme of Figure 21, that does not include the perturbations, illustrates this discretization
process. The scheme of Figure 22 is obtained where:

,M(z) = a(z) .A(z) (36)
1 + a(z) . b(z). th(z)"

It can be easily shown that the two mentioned perturbations may be grouped for control purposes in a
unique perturbation 6(z) (Fig. 22). It is now of the form:

6(z) = )"(1 ) (37)

6,, being a polynomial in z- 1 , and g,,d(z- 1) the denominator of g,,(z). The factor I - z- 1 of the denominator
is produced by the pole in the origin of perturbation 61, and numerator 6, is a combination of both
perturbations b, and b2.

The only approximation made for deriving Figure 22 is the mentioned interpolation. Transfer functions
h5(z) and M(z) are exact in the sense that they model exactly the behavior of the motor and inner loop
at sampling instants because the input to the motor comes from a D/A converter and it is adequately
modelled by a zero order hold.

5.1.2.2. Analysis.

From the block diagram of Figure 22 we get:

O(z) = M(z) . g,,(z) " (R(z) + N(z)) (38)

O9r(Z) I + M(z) . g,.(z) " R(z)

O,(z) 1

6(z) 1 + M(z) . g,,(z) . R(z) (39)
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If the feedforward term is of the form:

N(z) = g-' I (z) .M-' (z) . U(z), (40)

then the error in O due to the reference trajectory (assuming no perturbations) is:

1 - U(z)
eo,,(z) = 1 + M(z) . gn,(z) - R(z) Or(Z). (41)

The error due to the perturbations is, combining (37) and (39):

-(1 -z-)
e6 (z) = .(VndZ) (I--))(42)1 + M(z). gn(z). R(z)

The steady state error analysis indicates that it is necessary to use a controller with integral feedback to
eliminate steady state errors. So, it suggests that R(z) should be a P.I.D. controller.

5.2. Open-Loop Control

Expression (41) gives a very straightforward criterion for choosing the feedforward term: the closer
U(z) is to 1, the less eo,,(z) is. Ideally, we just need to make U(z) equal to 1 to get a zero tracking error.
U(z) = I means that the feedforward term does the perfect inversion of the dynamics of the arm which
is expressed as a relation between the commanded angle for the motor and the angle of the tip. But,
unfortunately, it is not possible to do this in many cases when trying to control flexible arms. There are
three causes that preclude the use of the perfect inversion of the system as a feedforward:

1. Transfer function gn(s) (or gn(z)) is normally non-minimum phase. It means that this transfer
function has zeros in the right half-plane. When inverting it, the feedforward term becomes unstable
producing unbounded control signals.

2. Transfer function M(z) is non-minimum phase or has zeros such that their real component is negative.
The same as above applies here when M(z) is non-minimum phase. In the other case, the inverted
term remains stable but the feedforward control signal generated is extremely oscillatory.

3. Delays in M(z). When inverting it, the feedforward term becomes noncausal. If the feedforward
control signal is precomputed, it is not a problem. But it impedes the real time generation of this
signal. It is important to mention that gn(z) does not present this problem because it was calculated
using a non causal hold.

Notice that the first problem is related to the inversion of the dynamics of gn(s), and the other two to
the inversion of the dynamics of the inner loop. So, if the inner loop is much faster than the dynamics of
the beam, we can assume that M(z) = I and we just have to face the first problem. Subsubsection 5.2.1. is
devoted to the study of this simplified case. The profile of the tip trajectory is deduced in Subsubsection
5.2.2., assuming this simplified case. The general case, where thL, dynamics of the inner loop are included
in the feedforward term, is studied in Subsubsection 5.2.3.

18



5.2.1. Feedforward term

An original method is proposed here that allows us to generalize the use of the inverse dynamics feed-
forward term to non-minimum phase systems. It will be seen that in this case an approximate inverse
dynamics term is generated that minimizes the differences between the desired and actual behavior of the
tip of the arm.

Let us assume a stable system whose transfer function is g(s). Assume that we want its output to
follow a nominal trajectory, represented by its Laplace transform u(s), as close as possible minimizing
the ISE error (integral squared error):

ISE f e(t)_dt_ f "cO
ISE= 2 (t). dt e(s) -e(-s) -ds. (43)

Then the feedforward term (see Figure 23) that optimizes this with the constraint of being stable is given
by the expression:

g.(-S).tUUS)]

US) = g.(s).+Iu(s) (44)

where:

gn(s), gn(-s) = g+(s), g (s),

g+(s) groups all the poles and zeros of g,(s) • gn(-s) that are in the left half-plane, and g-(s) all which
are in the right half-plane;

Iuu(s) = u(s) .u(-s) = J+u(S) .IUU(s),

where again 1 >uu(S) groups all the poles and zeros of Iuu(s) in the left half-plane and 13U(s) all which are
in the right half-plane; and

gn(-s). Iuu(s) [g.(-s) Iuu(s)1 + [gn(-s). Iuu(s)1
g -(s) u(S) L ; J + L g;_ (S) - 'UU(S)

where, assuming that the partial fraction expansion of the left hand member of the above equation has
been done, the + term represents the grouping of the fractions corresponding to the roots placed in the
left half-plane and the - term represents the grouping of the ones corresponding to the roots in the right
half-plane.

This method is just a slighi modification for open-loop control of the technique to obtain optimal
controllers described and demonstrated in Gupta and Hasdorff [221. Notice that we are minimizing a cost
of the form
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J - 0j [u(s) (1 - ,,(s). g.(s))]. [u(-s) •(1 - g,(-s))] • ds,
j.00

therefore if gn(s) is minimum phase, then k,,(s) = g-l(s) and, as consequence of all this, the continuous
feedforward term in this simplified case will be of the form

N(s) =

This method allows us to design an analog feedforward term that nearly cancels (if non-minimum
phase system) or completely cancels (if minimum phase) the dynamics of gn(s). If we denote the desired
trajectory for the tip position as Pp, the tip will not follow exactly this reference in the non-minimum
case. Instead, it will follow a new reference profile 0,, obtained from passing Pp through a filter whose
transfer function can be easily seen that is g,(s) -,(s). Then:

0,.(s) = gn(s). (s) . PP(s). (45)

In the minimum phase case, this filter will be 1. The property of this filter, according to (43), is that
the new reference trajectory 0,,(t) is as close as possible to the desired reference Pp(t), but taking into
account the constraint of a bounded 0,,.

Finally, we have to mention that, in the scheme of Figure 22, the feedforward term is discrete. This
term is implemented by generating the signal 1(t) of Figure 23 and sampling it with period T to produce
the sequence i(k) used in the control as it is shown in Figure 24. A discrete version of formula (44) also
exists that directly gives a discrete feedforward term g,(z). We preferred to use the continuous veron
and then sample the output because it is easier to compute and because the use of the discrete version
can easily produce feedforward terms with the problem stated above of having stable poles with negative
real component, generating a high frequency oscillatory control signal.

It will be stated in the next subsubsection that the nominal trajectories used in this work for the tip
position are second order parabolas. It can be easily shown that, for this class of trajectories, i(k) may be
generated from the samples of the nominal trajectory O,,(k) passing this sequence through a block N(z)
(see Fig. 22) whose transfer function is:

- ) [ = N(z) (46)
ST2 .z . (l+z - ) s3

5.2.2. Trajectories

Most of the work done on closed-loop control of flexible arms is based on the use of step functions
as command signals because they are easy to generate, and the responses of the arm to such inputs may
be easily analyzed. But the command signals typically utilized in existing industrial and research robots
are parabolic trajectories of order at least two. This is because the desired trajectories for a robot need
to have bounded derivatives until at least the second order, in order to take into account the mechanical
limitations of the arm. In fact, the second derivative of the trajectory is its acceleration, whose value
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is bounded by the maximum torque permissible in the mechanical structure and, in some castes, by the
maximum current allowed in the motor.

These considerations are also important in flexible arms. If the purpose of a flexible arm is to carry a
load at a high speed using a lightweight arm, the acceleration must be limited to prevent excesive bending
in the structure that could damage it.

Further, it is apparent that relaxing the sharpness of the trajectory allows the arm to follow the
trajectory better, avoiding in some cases undesired movements (overshooting) that may be produced
using step inputs, and avoiding excessive control signals that can saturate the amplifiers. For example,
Cannon et al. [1] reported this beneficial effect in the control of flexible arms when rounding the comers
of the steps.

In the opposite sense, sophisticated trajectories have been used to open-loop drive flexible structures.
Different optimization criteria have been used that take into account the limitations of the mechanical
structure: Farrenkopf [23], Turner and Junkins [24] or Meckl and Seering [16], a.e. The generation
of trajectories using these techniques is computationally laborious making them not suitable for on-line
control of flexible arms with several yibrating modes, when computer capacity is limited.

In this subsection we propose a family of trajectories that compromise the above considerations. They
must be simple enough to be generated in real time (and to allow a real time generation of the feedforward
control signal), but they must take into account the physical limitations of the mechanical structure. The
simplest trajectories that fulfill this are the parabolic trajectories. For this reason they are usually utilized
in rigid arms. We are going to show here that they can also be utilized for minimum phase flexible arms,
but not for non-minimum phase flexible arms because the feedforward signal cannot be generated in this
case. We propose here a family of trajectories for this last case. We call them quasi-parabolic trajectories.

These trajectories are represented in Figure 25. They are characterized by the fact of being very
similar to the parabolic trajectories, but having bounded derivatives up to forth order. The acceleration
profile of the quasi-parabolic trajectory is the same as the parabolic trajectory with a slight rounding in
the comers. So, the quasi-parabolic trajectory behaves most of the time as a parabolic trajectory. Only in
very small intervals of time, that conespond to !he :t-L'oes in *= : zclzration, both trajectories behave
differently.

5.2.2.1. Choosing the trajectory

Here we give a criterion for choosing between the two trajectories described in Figure 25. We will
also justify the necessity of the quasi-parabolic trajectories.

In order to calculate the feedforward term, we assume in expression (44) that the nominal trajectory
is a parabola whose Laplace transform is u(s) = 2/s 3. Taking this into account and operating (44) we get
the general expression used in this paper to calculate the feedforward term:

s 3  g g(- s) I
g,.(s) = -_s) g (s) s3 J (47)

and assuming that g,(s) is of the form:
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rJ(S - a,). l-I( -
g.(s) = RK. i=1 j=1

d(s)

where ai < 0, 1 < i < n1; bj > 0, 1 < i n2, and all the roots of d(s) are in the left half-plane, operating
we obtain that:

d(s). (a2" S2 + 011 • S + a0)

Ws) =2 (48)x. I(S - ca,). II(s + j
i=1 j= 1

Rt2

fJ(s + bj)
where the a coefficients are obtained from the partial fraction expansion of j_- aO..a2

,3 fl(s -b)
j=1

being the coefficients corresponding to the terms whose denominators are s, S2, S3 respectively The filter
of expression (45) is then

n2

1l(s- bj)
gn(s)" -N(S) = (a2 S2 + al • s + a0) - =1 (49)

l1 (s + bj)
J=1

and the following lemma is deduced, that justifies the necessity of the quasi-parabolic trajectories.

Lemma 1:

Assume we want to control a flexible arm using parabolic or nearly parabolic commands, and we
want to use a feedforward term to drive the arm. Then, with the exception of rare degenerate cases,
the order of the numerator of the feedforward term k.(s), calculated from (47), may exceed the order
of the denominator by a value of 2 if gn(s) is minimum phase, or by a maximum value of 4 if ga(s) is
non-minimum phase.

This lemma is easily proven using equation (48). If the system is minimum phase, then a2 = a1 = 0.
If it is non-minimum phase, in general these coefficients will be nonzero. We denote the order of this
polynomial as na,. Moreover, the difference between the order of the denominator of g,(s) and the order
of its numerator is 2 because of the form of the dynamic model of the beam (see equation (13) of Part I
Report), with the exception of the rare cases in which the n element of vert': 6 is 0. Then we find that
the difference between the order of the numerator and denominator of ,(s) is n, + 2 which is always less
than or equal to 4.

If the system is minimum phase then this number is 2. If it is non-minimum phase, may be up to 4,
and the lemma is proven.

Notice that the feedforward term may then be expressed as
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9.(S) =
" 
gn4 " S

4 
4 +gk3 " S3 +" N2 " S2 +t gn I + -k ,O + gap(S), (50)

wlere kno,... , g4 are constants that may take the 0 value, and gp(s) is a proper rational function in s.
Notice also that, as result of this, the difference between the orders of the numerator and denominator
of k,,(s) gives the order of the maximum derivative of the nominal trajectory needed to generate the
feedforward signal, and that consequently has to be bounded. From this and the previous lemma it
follows that parabolas (bounded up to the second derivative) can be used for minimum phase systems,
but normally cannot be used for non-minimum phase systems. Quasi-parabolic trajectories with derivatives
bounded up to the fourth order may be used in these cases.

Finally, when we use quasi-parabolic trajectories, the feedforward term of expression (47) is just an
approximation (it was obtained for a parabolic reference). But because of the closeness between these
two kinds of trajectories, this approximation is normally sufficient.

5.2.2.2. Designing the parameters of the trajectory

The parameters of the trajectory: maximum acceleration and second derivative of the acceleration, may
be designed approximately from expression (50), taking into account the physical limitations of the me-
chanical structure. In general, these limitations may be expressed in terms of the coupling torque between
the beam and the motor, which may be expressed as a function of the beam deflection:

C1(s) = C(s) deflection(s), k5 1)

where C(s) is scalar for massless beam case.

This deflection may then be expressed as

deflection(s) = [9 4 g •S3 + kn2 S2 + gnl • S + (9,0 - 1) + gnp(s)l - 01r(s) (52)

and, in many cases, the deflection may be kept between the safe boundaries just by choosing an appropiate
value for the maximum derivative of 0nr, needed to compute the above expression. This will be illustrated
with examples.

For massless beam, stresses at all points will be proportional to deflection. So torque limit is propor-
tional to deflection.

Another physical limitation is the maximum current allowable in the motor. Conditions for the deriva-
tives of the trajectory may be obtained from (50) in conjunction with the model of the motor. But they
are normally quite more complex than the conditions derived from (52) for the deflection. Moreover, in
our two flexible arms, the above developed mechanical condition is more restrictive than the one obtained
from the motor current limit, making unnecessary the consideration of this last constraint.

5.2.3. Considering inner loop dynamics

We mentioned before that, if the inner loop is fast enough compared with the outer loop, then M(:) = I.
In this case, problems 2) and 3) described in the beginning of Subsection 5.2. do not exist, the procedure
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described in Subsubsection 5.2. 1. applies, and the feedforward term is significantly simplified. It will
be seen in the experiments of the next section that this assumption is very often true when controlling
lightweight arms, although there are cases in which the dynamics of the inner loop must be taken into
account. In these cases, the problems caused by the non-minimum phase zeros of M(z) may be overcome
by using the discrete version of the method described in the previous section. But the oscillations caused
by the inversion of the zeros that have a negative real component cannot be removed. In order to avoid
both kinds of problems as well as the above stated noncausality problem, an optimization method with
constraints is proposed.

Assume the system has n, zeros in th. situations described in the case 2). Let us call them pi. Assume
also there are D delays in M(z) (D pole3 in the origin). Then a feedforward term of the following form
may be used:

NWz= (z').M()[nl ' = i Z "zD'f(z)=g'lI(z)'M-(z)'U(z)' (53)1i - 'oi

where k,(z- 1 ) = kn,(z- 1 )/d,,(z - 1' is the term calculated in Subsubsectior, 5.2.1. from gn(s), gn(z- 1 ) =

g,,(z-')/g,(z-'), and f(z) =f,(z)/fd(z) is a correction term whose calc,:1ation is the objective of this
subsubsection.

It has been mentioned that trajectories based on second order parabolas are used here. It seems
desiderable to make the arm follow these parabolas without steady state error. In order to guarantee this,
it can be easily seen from equation (41) that the following condition must be fulfilled:

I - U(z) = (1 - z-) 2 . W(z), (54)

W being a rational function in z. Combining this with equation (53) we get:

1-I(1-oi).-,,,a(z-l).-gnd(z-').'fa(z)-I - oi - ).- °  .,(z-t).g gn(z-').fn (z) = z(- z-t).(z), (55)

where W,(z) is a polynomial. Transfer function f(z) may be calculated in such a way that the tracking
error is minimized. Again we propose to minimize the integral squared error of (41):

00

Cost = e 2 (k).
k=O

But now, apart from the stability condition as given in Subsubsection 5.2.1., the following constraints
should be also fulfilled by the feedforward term:

* Zero steady state tracking error of a parabola (equation (55)).

e No stable poles in the left half plane.

@ It must be a causal term (no zeros in the origin). This condition is optional, depending on if a real
time feedforward term is wanted or not.
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A numerical method is proposed to calculate the optimum f(z) that accomplishes all these conditions.
Previous to its calculation, the form of f(z) should be defined (orders of numerator and denominator).
This is given by the following lemma.

Lemma 2:

Assume that the difference between the orders of the numerator and denominator of k,(z- 1 ) • gn(z - ' )

is v, n. is the number of zeros causing problem 2), and D is the number of delays of M(z). Then the
minimum order of the denominator of f(z) that accomplishes the above optimization constraints is given
(exceptuating degeneracies) by:

order fd(z) = n, + D + v + 1 (56)

and the order of the numerator is

order f(z) = 1. (57)

This lemma may be easily proved taking into account that the accomplishment of the constraints
implies that a number of order fd(z) parameters must be tuned to make f(z) stable, plus two parameters
more in order to make I - U(z) have two zeros at 1 (null tracking error condition).

Knowing the order of the f(z) transfer function, its coefficients can be chosen in such a way to op-
timize the above defined cost. Some of the existing numerical search methods may be used to get the
optimum parameters of f(z).

5.3. Closed-loop control

5.3.1. Classical control using tip position feedback

The use of a controller with an integral term is proposed, in order to remove permanent errors (Fig.
26). We mentioned before that the use of a feedforward term allows us to simplify this controller. Often,
simple PID controllers may be used to get good positioning performances. Moreover, the examples will
show that if a perfect compensation of Coulomb friction is provided, the feedback controller may even be
simpler because the integral action is not needed. All this allows us to use high sampling rates improving
the general behavior of the digital control system.

These controllers may be easily designed using, for example, classical frequency domain techniques.
The function of this controller is to compensate for the deviation of the tip position from the desired
trajectory. To move the arm to the desired angle, most of the control action required is provided by the
feedforward term. When the arm is not moving and a deviation from the -.ference position is produced
by an external disturbance, the control action to recover the desired position is provided by the controller
R(z). The fact that this controller compensates for only small deviations allows us to use high gains (when
the system is minimum phase) without saturating the amplifier of the motor. This produces a significant
improvement in the dynamic performances of the controlled system.
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5.3.2. Control that cancels the first natural frequency by using tip position feedback

This scheme is composed of two loops: a loop that cancels the first natural frequency, and a classi-
cal P.D. controller with a feedforward term as shown in Figure 27. The control components are designed
in three steps:

1. A positive unity feedback loop is closed to remove the first vibrational mode. This loop always
removes the first vibrational mode because g.(O) = 1 in all flexible arms.

2. A compensator is designed that cancels the poles of the remaining system, and its minimum phase
zeros.

3. A P.D. controller is designed (in the case of a single non-minimum phase zero) with a feedforward
term. In the case of more than one non-minimum phase zeros, a controller designed using the
standard pole assignment technique may be used, instead of the P.D. controller.

The feedforward term is designed here using the procedure described in Subsection 5.2., but taking
into account that now the g,(s) transfer function that has to be used is the resulting from steps I and 2
of the above described method.

5.3.3. Control using feedback of position at several points of the beam

The general scheme of this controller is also composed of two terms: the feedforward term discussed in
Subsection 5.2., and a feedback controller that uses the measurements of positions at intermediate points
of the beam.

Feedback controllers may be designed using any of the standard control design methods. Good results
are achieved using optimization techniques ([25], e.g.) to design a controller: y(s) = -A . x(t) that drives
x from an initial state to the zero state minimizing a cost function of the form:

. (xT(t) • R, -x(t) + R2 - t (58)

where R 1 E R2"nx2 "n,R2 E R are weighting matrices, and x E R2n is the state vector of the system. From
equation (13) of Part I, and making T, = F, = 0, we get the state equation of the system:

it)0 I. .xWt + ,,0 - OMWt (59)
(t= E.I.M-1 -A 0 E.-I. .I1

A B

where xT(t) ( 6 T7 ), and &n E R"'XA is the identity matrix. This model is simpler than models
used in other approaches (that relate 0,(t) and Om(t) with i(t)), producing simpler controllers.

If there were dynamic friction in the tip, then F would be proportional to the speed of the tip mass
and a coefficient would appear in the position (2 • n. 2 • n) of matrix A of the before equation.
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This feedback scheme uses the errors between the desired and the actual states to generate the control

signal. Defining A = ( At A 2 ); Ai, A2 E R-1 we can express the control signal (y) as a function

of the measured variables: 7(s) (A, + A2 . s). (O,(S) - e(s)).

The reference vector for the measured variables ((9,) may be obtained from the reference 0, by using
the following expression:

(9,(S) = T(s) . O,, (60)

C1 • Adj(M -$2 - E . I.A). E .1 13

C2.Adj(M s2 - E .I.A).E..3 I (61)

s=Cn.Adj(M s2 - E .1.A). E..3 (61)

Cn.Adj(M S2 - E.1. A). E .13 

where Ci = (0 ... 0 1 0 ... 0) the I being in the i - th column. These last equations are

obtained from equation (16) of Part I. Logically T = I results.

In the case of a non-minimum phase system, the denominator of T has some positive real component
roots. But they are cancelled with the zeros of filter (49), leaving (9,(t) bounded. Cancellation may be
exactly done because all these terms are computed.

This feedback control scheme presents important advantages over other existing schemes when im-
plementing it with a digital computer. Other control methods need to reconstruct the whole state x from
measurements of the motor and tip of the arm by means of filters or observers. They involve a large
amount of computation. In many cases, these reconstructions are distorted by the noise of the measured
signals making the control difficult. But in our case, because a) we have simplified the arm dynamics
by clos'ng the motor position loop, and b) we are using more sensing in the beam, all the states may
be easily obtained: positions are measured and velocities may be approximated by the simple difference
equation O(k. T) = (0(k. 7) - 9((k - 1) • T))/T where T is the sampling period and k is an integer.
Because only the first derivative of measured signals is needed, this approximation of the velocities of
the mass points is reasonable in many cases, even having relatively high levels of measurement noise.

Figure 28 shows the details of this control scheme. Notice that first derivatives of the position error
signals are used instead of first derivatives of the position states.

5.33.1. Influence of the payload

We study in this subsection how changes in the payload affect the dynamics of the controlled sys-
tem.

Inner loop

The motor position control loop is not directly affected by changes in the payload. Payload influences the
dynamics of this loop only through the coupling torque between the motor and the beam. This coupling is
being compensated by using expression (15) to estimate the coupling torque from position measurements.
Coefficients hi are independent of the payload and consequently no term of the inner loop needs to be
tuned as a function of die payload.
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Payload affects this loop indirectly if we consider the saturation limits of the motor current. If the
payload is too high, the current saturates and control performance deteriorates. But for the normal range
of payloads, performance of this inner loop may be considered invariant.

Feedforward term

Because of the Zero Invariancy Property described in Part I, the filter expressed in (49) is indepen-
dent on the load, and variations in the feedforward term (48) are due only to the factor d(s)/K. So k^(s)
can be easily tuned to payload changes by changing only one parameter in its numerator as it will be
illustrated in the example.

Feedback term

The gain factor and poles of the closed-loop transfer functions matrix 9 (((s) = 9(s) • er(s)) change
with the payload. But zeros of the transfer functions gt,i; I < i < n of the last row of this matrix remain
constant. Notice that these transfer functions characterize the closed-loop dynamic behavior of the tip of
the arm.

Proof of zeros invariancy: the closed-loop state equation (without the feedforward term) is:

x(t) =- S.Aj) -E.I.M-.B.A 2  ) + ( E.I.M-.13.A1  E.I.M-S.B.A 2

e( W (In 0 ).x(t),

where x7 is the state reference; and operating:

0(s) = (s2 -M + s - .E . . A2 + E. I. (-A + B. A,)) - ' ,. .3. (Al + s. A2). Or(s).

In this expression, 9(s) shows the same dependence of M as expression (16) of Part I. Then, the
same reasoning that supports the Zeros Invariancy Property is applied here to demonstrate this.

Finally, only numerators of 2 are affected by changes in the payload. Their dependence on m, is
similar to the dependence of kn(s).

6. Tip Control Experimental Results

Control methods described in this report are applied here to our two flexible arms, whose dynamics
were modelled in Part I. Experimental results are shown.
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6.1. Single-mass flexible arm

6.1.1. Discretization

This system has only one vibrational mode and it is minimum phase. The transfer function of the
beam was found to be (see Part I):

43.75
s2 + 0.06 s + 43.75 (62)

Applying the discretization method suggested in Subsubsection 5.1.2.1. we get:

gi(z) = 0.6583. o10- - I + 3.984848485. z- I + z - 2
1 - 1.999423 • z- 1 + 0.999817 • z- 2  (63)

And the sampled data equivalent transfer function of the inner loop is

0.0309247. z-2 (1 + 0.857737056 • z- ' - 0.139691015. z- 2)1 - 1.993393 • z- '+ 1.199567748 - z- 2 + 0.00159364 • z- 3 - 0.179119249. z- 4 +0.0244809 •- 5

(64)

We can notice that M(z) has a delay D = 2, and a zero in -0.99774394.

6.1.2. Open-loop control

6.1.2.1. Simplified feedforward term

The settling time to a step input of the inner loop was found to be 30 msec. So it is much faster
than the dynamics of the beam and it may be assumed that M(z) = 1.

Because gl(s) is minimum phase, we get from (48) that kl(s) = g- 1(s). And because of the assumption
M(z) = 1, we have that the feedforward signal 1(k) is given directly by sampling the output of ti(s).

Because the system is minimum phase we use the parabolic trajectory to command the arm. The only
parameter to calculate there is the maximum acceleration and this can be easily obtained from equation
(50), taking into account that in this case C(s) of expression (51) is a constant. It means that the torque
is directly proportional to the deflection. The maximum allowed deflection for this beam is 400 mrad.
(23 degrees). Using equation (50) we get the simple expression:

deflection = acceleration/43.75, (65)

and, therefore, the maximum acceleration is 8750 mrad/sec2 . We have assumed a deflection of 200 mrad.
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(50 % of the maximum deflection) to calculate this acceleration, in order to allow some extra deflection

for the action of the c, atroller R(z). Figure 29 shows the resulting feedforward signal.

6.1.2.2. Complete feedforward term

Because there is a zero of M(z) in the left half-plane (n, = 1), and a delay of two sampling periods
(D = 2), the inverse of M(z) cannot be directly used for a real time feedforward compensation of its
dynamics. In the experiments carried out here, the feedforward term is precomputed so, the delays are
not a problem. Ih order to cancel the effects of the left half-plane zero in -0.997744 then, according to
Subsubsection 5.2.3., M-1 (z) is multiplied by the factor (1 + 0.997744 . z-1 )/1.997744. And a corrective
f(z) term is calculated taking into account the conditions stated in those subsubsection:

f(z) = 1.20912 - 0.870105 z-

1 - 0.661 • z-1

Notice that, according to Lemma 2, the order of the denominator should have been 2. This is a
degenerate case where the coefficient corresponding to z- 2 is 0. Figure 30 shows the implementation
scheme of this feedforward term, and Figure 31 shows the feedforward signal generated.

From comparing Figures 29 and 31 we see that both feedforward signals are quite similar. The only
significant difference is given by some impulses produced at the instants when the value of the acceler-
ation changes. These impulses tend to speed up the motor in these changes, in order to compensate the
dynamics of M(z). Experiments showed that including the dynamics of M(z) in the feedforward term did
not produce any significant improvement in the control of this arm. So in what follows, we will use the
simplified feedforward signal shown in Figure 29.

6.1.3. Closed-loop control using the first scheme

The first scheme coincides with the third one in the case of a single-mass flexible arm.

R(z) was chosen to be a simple digital P.I.D. controller and was obtained by minimizing the time
needed by the arm to recover its desired position when changes in the position were produced because
of external perturbations. The perturbation model represented by equation (37) was used. We assumed
that we had a combination of two perturbations : a permanent error position perturbation in the angle of
the motor, and a perturbation on the tip because of erroneous initial conditions. The resulting optimum
controller was

= 100. (1 -0.98. z-). (1 -0.99. z- 1)
(I - z-1) •-(I - 0.61 -z- 1)

Figure 32 shows the tip response of the parabolic profile. It shows that the arm slightly leads the
reference because of the feedforward term. The settling time is of 0.22 sec. A comparison between the
angle of the tip and the angle of the motor is given in Figure 33, showing that the dynamics of the inner
loop is very much faster than the outer loop, and the movements required are larger.
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6.1.4. Closed-loop control using the second scheme

For the case of a flexible beam with only one vibrational mode, a very simple decoupling loop can
be implemented that reduces the dynamics of the system to a double integrator. This is done by simply
closing a positive unity gain feedback loop around the tip position, and premultiplying by 1/w2 (1/43.75),
cz!' , .-i in Figure 34.

The transfer function of the beam is given by expression (62). It is transformed into

1
s2 +0.06. s'

which is approximately a double integrator (the first order term of the denominator can be neglected).

A simple analog P.D. controller was designed and was then discretized using the Tustin transform
[21]. The discrete transfer function of the digital controller is given by

1 - 0.987*•z-1
R(z) = 3281.25 -0.74z

1

1- 0.74.-z- 1

The feedforward term is, in this case, a pure second order derivative term s2, that generates a signal
which is the acceleration of the parabolic profile (a piecewise constant signal).

Figure 35 shows the tip position response to the second order parabolic trajectory. A comparison
between the angle of the tip and the angle of the motor is given in Figure 36. Figure 37 shows the motor
position and its reference input.

6.2. Two-mass flexible arm

6.2.1. Open-loop control

6.2.1.1. Trajectory design

The beam is non-minimum phase. Then, according with Subsubsection 5.2.2., we choose a quasi-parabolic
profile. Acceleration and second derivative of the acceleration are chosen taking into account mechanical
constraints (maximum allowable deflection of the beam). They are: acceleration = 7875 mrad./sec2 .,
2nd derivative of acceleration = 8648646 mrad./sec4 ..

Filter (49) is in this case:

g,(s) . b(s) = (1 + 0.05605 • s + 0.00157075. s2  35.683 - s (66)35.683 +s

Figure 38 shows the ideal quasi-parabolic trajectory Pp(s) that drives the tip from -100 mrad. to 100
mrad., and the optimized reference trajectory On,(s) resulting from passing Pp through this filter.
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6.2.1.2. Feedforward term

It is given by expression (48) (expressed in function of the payload m2):

(0.12136.m2.s4+(176.6032.m2+2.6791).s +852.81575). 14 0.05605 -s + 0.00157075 -s 2

0.6697676. (s + 35.68333)2

m2 appears only in the first factor. Then this feedforward term may be easily tuned as function of the
payload using the scheme shown in Figure 39. Particularizing to our example (m2 = 0.12136 Lb.):

g,,(s) = (s4 + 1637.1 • s 2 + 57903.3175). 1 + 0.05605 . s + 0.00 157075 s 2 (68)
45.475 (s + 35.68333)2

6.2.2. Closed-loop control using the first scheme

In the inner loop, the motor was decoupled approximately from the beam by using expression (32).

The feedforward term expressed in (68) was implemented, and a digital P.D. controller was used whose
parameters were experimentally tuned. It was of the form

R(z) = 4.891 1 - 0.98511
1 - 0.94174 • z-

Figure 40 shows the tip response to the quasi-parabolic profile. Notice that the first vibrational mode
is completely cancelled, and the second one is reduced to a small damped ripple (the amplitude of the
largest ripple is less than 3% of the step amplitude). The settling time is 0.3 sec. Figure 41 shows the
comparison between the angle of the motor and the angle of the tip, and Figure 42 shows the tip position
control action provided by the feedforward term compared with the one provided by the controller R(z).
Notice that the use of a P.I.D. controller has not been necessary because the effective compensation of the
Coulomb friction and static coupling torque carried out in the inner loop removed the permanent errors.

A more complex controller could have been designed here in order to remove the remaining ripple,
and include some integral action, as was suggested in Subsubsection 5.3.1. However, this has not been
done because the purpose of this example was to show that it is possible to control flexible arms of rela-
tively complex dynamics with a simple feedback controller (in this case with a PD. controller) if a proper
feedforward term is used. This feedforward term was shown to be easy to generate. Therefore, flexible
arms of complex dynamics may be controlled using control units of modest computing capabilities.

6.2.3. Closed-loop control using the second scheme

We use here the same method as in 6.2.2. to decouple the motor from the beam.

The transfer function of the two-mass flexible beam is:
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-T. (s2 
- Q2)

gM(s) = (s2 +.).(s 2 + .2 )

2 2

where w and W2 are the natural frequencts of the two vibration modes; and k = w • W2/ or.

The method to design the tip position controller is

1. Cancellation of the first (lowest frequency) vibration mode by closing the positive feedback:

-K . (s- - a,)
gn'(S) =2+s2 . (s2 + W2 + W2+

2. Cancellation of the remaining minimum phase dynamics. We use a compensator of the form

52 + +W2 +/k

R . (s + az)

to reduce the dynamics of the beam to

g2(s) = a " (69)

3. Feedforward term. We apply expressions (48)-(49), but using g,(s) instead of g,(s). We get that
the feedforward term of scheme of Figure 34 is of the form:

- . (1 +--.S+--. s2 )

$ + z az a
2

It is easy to prove that the filter of expression (49) is the same in all three methods.

4. Feedback controller: a P.D. controller is used to place the poles of system (69) in the desired
locations. Again, the controller is designed in the s-plane and then discretized. The discrete
transfer function of this system is shown in Figure 43.

Figure 44 shows the reference and the experimental tip position and Figure 45 shows a comparison
between the tip response and the response of the middle mass (01). A comparison between the tip position
response and the angle of the motor is given in Figure 46 whereas Figure 47 gives a comparison between
the commanded and the actual motor position. Figure 48 shows the output of the feedforward term.

6.2.4. Closed-loop control using the third scheme

We first need to calculate 7(s), that gives the references for the measured variables. Using (61) we
get:
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545.7 (s2 + 106.10833) 1 1
-45.465. (s2 - 1273.3) J -45.465 (s2 - 1273.3) (70)

The numerator of the first element of vector Y may be tuned, as a function of the payload, in the

same way as the feedforward term.

Figure 49 shows the plots of the references Or(t), 0,(t) and 0,,(t) (feedforward term).

In order to get the feedback controller, we chose a cost function (58) of the form: R, = diag(l, 2,0. 0),
R2 = 1, where we weighted the tip position twice the middle mass and motor positions. The optimum
controller that minimizes this cost is:

A= ( 0.4428 0.5572 0.0534 0.1828 ). (71)

This places the closed-loop poles at -3.79 ± j. 7.375, -6.61 ± j. 40.506.

Because of the limited speed of our computer, the feedback loop had to be implemented with a
sampling period of 6 msec. (twice that of the motor control loop).

Figure 50 shows the tip response, Figure 51 the response of the middle mass, and Figure 52 the motor
response compared with the middle mass and tip responses.

The 4-th parabola reaches the target position in 0.36 sec. Figure 50 shows that the tip reaches this
position with an error less than 2% in 0.4 sec. Then fast and accurate motions are achieved for this drn.
Tracking errors in Figure 50 are significantly smaller when the trajectory i. lower. Notice the high level
of noise of the camera measurements 01 and 02.

7. Comparative Study of the Three Tip Position Control Methods

7.1. Introduction

We showed in this report that tip position control of flexible arms with friction in the joint may be
achieved by using a robust scheme composed of two nested loops. We showed too that the design of
the inner loop is quite straightforward consisting of a simple P.D. controller, but the design of the outer
loop may be approached in several ways. Three methods have been proposed here: a feedforward based
control scheme, a method that removes the first natural frequency of the beam, and a method that uses
position measurements at intermediate points of the beam. All three methods have been experimentally
tested exhibiting similar behavior when tracking a specified trajectory. In order to decide which one is the
best, we study theoretically in this section the sensitivity of them to several disturbances that are likely
to happen.

In the ideal case, when there are no perturbations, these three control schemes produce the same
dynamic behavior in the arm. This section compares their performances when perturbations and unmod-
elled dynamics are present. In particular, three cases are considered: external disturbances at the motor,
unmodelled dynamics in the inner loop, and changes in the carried load.
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Because we compare here control schemes instead of controllers, such analysis is quite complicated.
A standarization criterion had to be defined among control schemes, in order to compare controllers of
the different schemes wih equivalent characteristics. The criterion chosen was to compare controllers that
placed the closed-loop dominant poles in the same positions, and secondary poles as close as possible.

The thr" schcmzs are normalized in Subsection 7.2. An analytical study of the behavior of these
methods in the presence of the three mentioned disturbances is carried out in Subsection 7.3. And the
results of this study are applied to our two arms in Subsection 7.4.

7.2. Normalization of the three schemes

The three schemes are represented in Figures 53-55. The first scheme is the feedforward based con-
trol scheme, the second is the method that removes the first natural frequency of the beam, and the third
one is the method that uses sensing at intermediate points of the beam.

We denote as "beam" in Figure 55 the model of equation (13) of Part I (assuming no forces or torques
applied at the tip):

d20
M • d12 = E. I. [A4.9 + S. Ome], (72)

where M = diag(ml, m2,... , m"), (9 T = (01, 02,..., 0n), A is an n x n constant matrix, and 8 is a constant
n x I column vectors. A and B depend only on the geometry of the beam. The values of the lumped
masses only influence the matrix M.

This model is exact in the case of lumped-mass flexible arms, mi being the lumped masses; and is
a reasonable approximation in the case of flexible arms distributed-mass, represented by mi, (i < n)
coefficients, which are related in some way with the distribution of masses along the beam, and mn being
the tip payload. We easily obtain from equation (72) that

e(s) = (M . S
2 - A) - ' 3. Om(s). (73)

These three methods are based on the assumption that the response of the motor 0.. (after having
closed the motor position inner loop), to changes in its reference 0,,,., is faster than beam dynamics, and,
therefore, that the dynamics of the inner loop are represented by the unity transfer function (M(s) = 1).

The three methods differ in the importance given to the "a priori" knowledge of the plant (represented
by the model) relative to the importance given to the on-line measured signals. The use of the flexible
arm model in the control reduces the number of variables to be measured. A way of using this model
is by implementing a controller with a feedforward component. This term can be computed off-line, and
allows us to simplify the feedback component of the controller, that uses on-line measurements. Some
advantages from the stability point of view have been reported [261 for these schemes when applied to
rigid arms, that seem to be extendable to flexible arms. But these schemes are more sensitive to changes
in the parameters of the plant than other schemes, this being especially critical in flexible arms because
of their undamped nature.

The three schemes have a feedforward component, but the first scheme is the one that relies most on
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the model of the arm. All the driving action is carried on by the feedforward term in this scheme, being
generated from the desired tip position trajectory and the model of the arm. The measurements of the tip
position are used only to correct small perturbations when following the desired trajectory.

The second scheme uses measurements of the tip position to compensate for tracking crors (as in
the first method), but these measurements are also used to cancel the first natural frequency of the beam,
which is the dominant frequency in most of flexible beams. The positive unity gain feedback loop shown
in Figure 54 always removes the first vibrating mode, independently of the transfer function of the beam.
Higher modes are canceled by implementing the inverse of the minimum phase factors of the transfer
function resulting after having closed the above positive feedback loop. The feedforward term used here
is much simpler than the one used in the first scheme. Now, part of the driving action is generated from
on-line measurements of the tip position, through the positive unity feedback.

The third scheme uses sensing at several points of the structure allowing us to simplify the feedback
controller. It includes the feedforward term of the first scheme. But now the feedback loop does not
depend so strongly on the model because it uses multiple sensing.

We denote the filter ga(s) - (s) as f (s).

In the ideal case, when there are no perturbations, the three schemes give the same response 8,(s) =
f(s) .Pp(s). Consequently, we will denote this signal as 0,,, and we will use it as reference for the feedback
controller.

Differences among the three control schemes appear when there are perturbations that have to be
compensated by a feedback controller R(s). This is developed in the next subsection.

7.3. Comparative study

Three types of disturbances are considered here. Our three control systems are compared studying their
responses to them.

The first disturbance represents errors in the position when following a trajectory. This is the distur-
bance used in most of the perturbation analyses. In our flexible arms, they may be produced by extemal
disturbances, or by any remaining effect of the Coulomb friction, e.g..

The second disturbance is specific to the control method proposed here: it is produced by the un-
modelled dynamics of the inner loop. As it was mentioned, a unity transfer function was assumed for
the inner loop. This is only approximate. In general, it is given by a transfer function M(s, a'), where
a' E R",-' represents a vector of parameters a , I < i < n,. We denote as a'° the set of parameters a
that make M(s, a') = I. The sensitivity of the system to small variations of a' around a0o will be studied
as an index of which control scheme best supports the assumption M(s) = 1.

The third disturbance considered here is produced by changes in the tip payload.

As commented in Subsection 7.1., we have chosen the normalizing criterion that equivalent control
schemes are the ones that have their closed-loop poles in the same locations (if possible). Then, in what
follows, we assume that the controllers R(s) of each scheme have been designed in such a way that all
three schemes have the same dominant closed-loop poles, and the secondary poles are placed as close as
possible to each other.
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For the sake of simplicity, we assume here that the number of right half-plane zeros is 0 or 1. This
assumption covers many practical cases. Exp.essions similar to the ones shown here may be obtained for
higher numbers of positive zeros. In what follows, zp, is the positive zero. If there is not a positive zero.
we use the convention of making zp = o.

7.3.1. Perturbation in the motor position

We denote this perturbatio, as e(s) and it is added to the reference motor position signal:

0.m(S) = 0,, ,(s) + E(s). (74)

Figure 56 represents this for the first control scheme.

From schemes of Figures 53-55 we get:

first scheme:

0.(s) g.(s) (75)
e(s) I + RI(s) . g,(s)"

second scheme:

O(s) gn(s)
- G 2 (s) (76)E(s)(- g"(s)).( + )

third scheme:

O(s) = G3(S) gn(s) (77)
6(s) I + g,(s) . (A I + A2 •s) Y(s) (77

We denote from now on G1,G2 ,G 3 as the transfer functions corresponding to schemes 1, 2 and 3
respectively; and R1,R2, AI + A2 • s as the feedback controllers in these schemes.

Assuming that the order of the denominator of g,(s) is ng., expression (76) shows that n., - 2 poles
of the closed-loop system are fixed in Scheme 2, and are given by the zeros of (I - gn(s))/s 2. This fixed
poles are normally far away from the origin, being of secondary importance compared with the dominant
poles that can be assigned. If we have 0 or I positive zeros, two dominant poles may be arbitrarily placed
by a P.D. controller: R2 (s) = r2,o + r2, • s.

We define the index p,,,(s) = i,j < 3 to compare these schemes. Assuming that the controllers
do not increase the order of the system we have:
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P2,1(S) +R(s) g(s) S2  I(s- ()7
s2 +f(s) . R 2 (s) I - gn(s) r, -

(Z7) IJ(S -7h

i=1

M7Js - 74
P3,1(S) = G3(s) I + Ri(S). g ,,(S) = i=1 (79)

G (s) 1 + gn(s) . (A1 + A2  s). T(s) ""(9H(S - 77 )
i=1

where Tli is the i - th closed-loop pole of Scheme j.

And P3,2 may be obtained from

P3,2(S) = P3,1(s)1P2,1(S). (80)

Expression (78) is used to compare the frequency characteristics of schemes I and 2. If I p-2,(j-w) I< 1,
then Scheme 2 attenuates more than 1 the component of frequency w of the spectrum of the perturbation
E. If I P2,1 U -w) I> 1, then Scheme I attenuates more this frequency. Expressions (79) and (80) are used
in the same sense.

7.3.2. Unmodelled dynamics

We consider the dynamics of the inner loop M(s) in this subsection. In order to compare the effects
of M(s) in the overall performance of the three schemes, we assume that small variations in the parame-
ters a , i < n,, may happen around the parameter values vector Q,0 that gives the ideal M(s) = 1. Then
we use the sensitivity function [7]:

OT(s) ai!STC =1 0c7 T(s) (81)

where T(s) is the transfer function that relates the output On(s) with the input Pp(s), and c is the parameter
of M(s) that varies. The scheme most appropiate for a design assuming M(s) = I will be the one that
exhibits the smallest sensitivity to changes in the parameters a'.

First we analyze the effects of M(s) in open loop control (just using the feedforward terms of schemes
1-3). Then we study the case of the complete schemes, including their feedforward and feedback terms.

7.3.2.1. Open-loop control

Schemes I and 3 use the same fcedforward term, intermediate sensing is only used in Scheme 3 for
the feedback control. Then, we only have to compare here schemes I and 2.
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We get from Figures 53, 54 that

first scheme:

(S) =T 1(s)=f (s) .M(s), (82)Pp,(s)

second scheme:

On(s) = T( !() M(s) (1 - gn(s)) (83)
PP(s) 1 - M(s). g"(s)

And the sensitivity functions with respect to a parameter a i of M(s) are:

= M(s) . ato (84)

1 OM(s) ,o
ST2,' = 1 - g,(s) Ocr ' (85)

for the first and second scheme respectively.

The beam does not exhibit any deflection when the arm is stopped. Then, applying the Final Value
Theorem [7], we have that g,(O) = 1 and lim-.o I gn(s)/(1 -g,(s)) 1= 00 in (85). Consequently, comparing
expressions (84) and (85), we get that Scheme 1 is much better than Scheme 2 at low frequencies (up
to the first natural frequency), while at high frequencies both schemes are similar (lirno.g,(s) = 0 =
lim... ) = 1). At medium frequencies, both sensitivity functions are of the same order.

Low frequencies dominate in the spectrum of reference signal P.. Therefore open loop control of
Scheme 1 is more insensitive to the dynamics of the inner loop M(s) than Scheme 2.

7.3.2.2. Closed-loop control

We get from Figures 53-55, using expression (81) and particularizing a' = &O° (or M(s) = 1), that:

Scheme 1:

I + g.(s). R,(s)
P(S-) = TI(s) =f(s) .M(s) 1 +g,,(s) . M(s) . R1(s)i Pa(s)

1 O9M(s). '. 86
: ST, (86)=

I ' M +g,(s). RI(s) 0o(6

Scheme 2:
9s)R2(s) .f(s) m__________s)________

O_(s) = r2(s) =fs. (1 0 g(s)). 0 + M))
Pa(s) sz)(1I 1 + M(s) (f(s). R2(s) - g(s))
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I OM(s) (87)
(1 - g.(s)). (1 +f ) " g --s()

Scheme 3:

Os(s) M(s) . (1 + g.(s) " (A, + A2 . s) T(s))
PP(S)3(s) =f(S) 1 + g,(s) (A 1 + A2 s). T(s)

1 &M(s) /o

ST3, = I + g,(s) " (AI + A2 "s) .T(s) 0a -*0 .a(88)

We define indexes ri,(s) = STj,,(s)/ST,oa(s); ij < 3. Like in Subsubsection 7.3.1., if I rid(" w.) I< 1,
then Scheme i is better (less sensitive) than Scheme j; and Scheme j is better than i if I wrid(J w) 1> 1.
Operating with expressions (86)-(88) we gr, that

Tij(S) = pij(s); Vi,j. (89)

7.3.3. Changes in the payload

We use in this subsubsection the sensitivity function:

OT(s) m,,STe. -T(s (90)

where m, is the tip payload, and m ° is the nominal tip payload for which the controllers have been
designed. Model (72)-(73) expresses the dependence on the payload, so we use this to study the sensitivity
in the three schemes.

Scheme I:

S 2  C A 2'M = 2C2A 0 = 8 dg.W(s) M(9I)

Srmmn Sn s +i(s) ) -  (s)(1+ R1 (s). g,.(s)) Ormn

Scheme 2:

St,,,= -s 2 . C"- (M • s2 - A - £3. C,, + R2 (s) .f(s) (1 - g(s)) .B. C,,)-' C. =g"(S) " S 2

1 dg(s) 0=L,_ - .. m, (92)

gn(s) • ,(1 - g-(s) (1 + T- )m,

Scheme 3:
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ST3 ,m, = -S 2  (M s2 - A + 13 (A 1 + A2 S)) Cn , =

1g(s). (A1 + A2 -s). r-/-g)d gn(s)-~ ~ o, n ". ,,. Og- ' n.s)3

gn(s) (1 + gn(s) . (Al + A2  s) . Y(s)) m ". (93)

We define indexes ,\ij(s) = ST,,,(S)/ST,m.(S); i,j < 3 with the same meaning as in Subsubsections
7.3.1-2. We have now:

A2,1 (s) = P2,1 (s) (94)

A3,1(S) = P3,1(S) - (I - g2(s). (1l1 + A2 -S) . . (95)

7.4. Application to our flexible arms

The above considerations are applied here to the cases of flexible arms with one and two vibrational
modes. We use as examples the two flexible arms that we have built in our laboratory.

Expressions obtained in Subsection 7.3. are exact for flexible arms that can be modelled as lumped
masses. In the case of flexible arms with distributed masses, the analyses of subsubsections 7.3.1. and
7.3.2. are exact if we assume that the infinite dimension dynamic models of these arms have been properly
truncated. The expressions of Subsubsection 7.3.3. are just approximate because they use the assumption
that matrices A, 13 do not depend on the mass of the tip. This is a good approximation in many cases.

7.4.1. One vibrational mode case

In general, the model of a single vibrational mode flexible beam is given by

M1 O.(s) = _p . 01(s) + P . 0,(S), (96)

or by

p/mi 97
gi(s) = s2 +p/m (97)

the resonant frequency being wl = ,P-7" .

In this case, schemes I and 3 coincide. Then we only compare here schemes 1 and 2.
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The system described by (97) is minimum phase f(s) = 1, and has only two poles #- P.D. controllers
may place the poles of this system wherever we want. Denoting RI(s) = r1,o + r1, • s, R2(s) = r2,0 + r2,1 • s,
and taking into account that closed-loop poles of schemes 1 and 2 are placed in the same location we
get that P2,1 = 1. This means that both closed-loop schemes exhibit the same behavior in presence of
disturbances 1 and 2. We get from (94) that A2,1 = P2j. Then both schemes exhibit the same sensitivity
to changes in the payload.

In the case of having M(s) unmodelled dynamics in the open loop control, we get from (84)-(85) that

7-2,() = 1 - a which agrees with subsubsection 7.3.2.1. (see Fig. 57).

The parameters of our single-mass flexible arm are: ml = 0.12136 lb.,p = 5.3095 = = 6.614
rad./sec. We place the closed-loop poles at -5.03 and -32.58. Then the controllers designed to achieve
this are: R1(s) = 0.86 . s + 2.748,R 2(s) = 37.61 • s+ 163.98.

7.4.2. Two vibrational modes case

The identified parameters of our two-mass flexible beam are (Part I):

( 0.12136 0 A (-176.6032 110.377 L ( 66.2262 (

0 0.12136 A = 27.59425 -22.0754 -5.51885 . (98)

We get from this:

Wn$-0 2 . 02 02_ 2

a2 (s2 + W2). (s2 + W2) (99)

where wl = 6.014 rad./sec., w 2 = 40.0116 rad./sec.,a a = 35.683.

Dominant poles of the closed-loop system are placed at -3.79 ±j. 7.375. This is a good compromise
between the error in the response and the amplitude of the control signal. The plant has four poles, and
the controllers are designed in such a way that they do not increase the complexity of the system, the
number of closed-loop poles remaining four.

We use here the following controllers:

" A = ( 0.4428 + 0.0534. s 0.5572 + 0.1828 .s ), that places the closed-loop poles at: -3.79 j.

7.375, -6.61 ±j. 40.506.

" We chose a controller R1 that placed the dominant poles in the same positions as the dominant poles
of Scheme 3, and the secondary poles in positions close to the secondary poles of Scheme 3. In
fact, we imposed as proximity criterion between secondary poles to have the same real component.
The controller designed was Rj(s) = -0.457438 • (s2 - 6.58135 • s + 23.45615)/(s + 35.683), that
placed the closed-loop poles at: -3.79 ±j. 7.375, -6.61 ±j -23.35. The pole of RI was -a,, that
cancelled the negative zero of the plant.
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* R2(s) = 7.5226 • (S + 7.21292), that places the closed-loop poles at: -3.79 ± j. 7.375, +j. 41.02.
The secondary poles of this scheme are fixed.

These controllers are compared in the next paragraphs.

7.4.2.1. Position disturbances

We first compare Schemes 1 and 2.

If we denote as 773 and 7741 the pair of secondary conjugate poles that appear in the closed-loop transfer
function of Scheme 1, we get from (78):

P2,1(S) I (S - ) (s - 4
I - r2,1/a, s2 +W2 +W2 + 2 / 1 / . (100)

We compare the frequency characteristics of the two schemes making s = .w in the above expression.
At high frequencies p = 1/(1 - r2,1/az). The Routh-Hurwitz stability criterion states that 0 < r2,1 < az
is condition for the stability of Scheme 2. Then p,1 > 1 at high frequencies.

At low frequencies we have that:

P2,1 7 - 7. 2 (101)

The function p2,1(w) is plotted in Figure 58. It shows that Scheme 2 removes better than I low and
medium frequency components of the perturbation, and removes worst high frequencies. If high frequency
components of normal position disturbances are small, then we conclude that Scheme 2 removes better
than I position perturbations. While secondary poles of Scheme 2 are fixed, secondary poles of Scheme I
may be placed with certain limitations. It can be shown that Scheme 2 behaves better than I independently
of the placement of these poles.

A similar analysis is done to compare Schemes 3 and 1. Figure 58 plots p3,1(w) too. It shows that
Scheme 3 behaves better than I at low frequencies, independently of the secondary poles of Scheme 1,
and that both schemes behave approximately the same at high frequencies. So we conclude that Scheme
3 is better than 1.

Substracting P3,1 and p2,1 in Figure 58, we get P3,2. Scheme 3 behaves better than 2 at all frequencies.
The secondary poles of Scheme 3 can be arbitrarily assigned while the secondary poles of 2 are fixed.
It means that, with a proper design, we can make Scheme 3 remove considerably better than Scheme 2
position perturbations.

7.4.2.2. Unmodelled dynamics

Expression (89) means that the results of the previous analysis are valid also for unmodelled dynam-
ics in the motor position control loop.
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7.4.2.3. Payload changes

Comparison between schemes 1 and 2 made in 7.4.2.1. remains valid in this case, because of expression
(94).

Operating (95) we have that

(A, + A2" - 0

\3,1() = P3,1(S)• (1+ b• i s). ( )" (102)
mi . s - &iti

A3,1(J .W) is plotted in Figure 59, and shows that Scheme 3 is better than I at low frequencies, which
are the most significant.

From (94) we have that A3,2(s) = A3,1(s)/p 2,1(s). And comparing Figure 58 with Figure 59 we get
that Scheme 3 is slightly better than Scheme 2 both at low and high frequencies. Again, a proper choice
of the secondary poles in Scheme 3 would make it significantly better than Scheme 2 and, hence, than
Scheme 1.

8. Conclusions

This report studied the control of the tip position of flexible arms with friction in the joints. A new
general method for their control has been proposed. This is a robust control scheme, proposed in order
to reduce the effects of friction and the effects of the inaccuracies in its modelling. The method consists
of designing two loops: an inner loop that considers basically the dynamics of the motor (a compensator
is designed that decouples the motor from the beam) and a second loop that considers the dynamics of
the flexible beam. The first control loop can be designed using any standard method. It must have high
gains in order to remove the effects of the friction in the control of the motor position. The second loop
requires the use of sophisticated techniques in order to drive the beam without producing oscillations.

In order to design the outer loop, some new ideas have been explored. The use of a simple feedforward
term has been proposed in conjunction with the use of feedback controllers. The design method for the
feedforward term was generalized in order to include non-minimum phase systems. Also, a method to
include the dynamics of the inner loop in the feedforward term (when it is necessary) was proposed. The
use of parabolic or quasi-parabolic command profiles is also proposed. These trajectories are adequate
enough to be generated in real-time, as well as the corresponding feedforward terms, but are complex to
take into account the physical limitations of the beam (the maximum allowable torque). Some criteria to
choose these trajectories and their parameters have been proposed. It was found that only two kind of
trajectories are needed: parabolas for minimum phase systems and quasi-parabolas of up to fourth finite
derivatives for non-minimum phase systems. This result does not depend on the number of zeros that the
system has in the right-half plane. The use of these trajectories allows us to also improve the dynamic
response of the system because they facilitate the control action, when compared with step references.

Three feedback schemes have been proposed to control the tip position. The first one uses a simple
controller to place the poles of the beam where desired, usir only tip measurements. The second one
uses a positive feedback loop to remove the first vibrational mode, and then cancels all the minimum
phase dynamics of the beam. The third one uses position measurements of intermediate points of the
beam in addition to the tip position measurement. The feedforward signal is basically the same in all

44



three schemes, but the feedforward controller is modified in the second scheme, to take into account the
positive feedback loop.

All three schemes give the same response in ideal conditions, but they differ in their behavior when
disturbances are present. Three types of disturbances were used to compare them: perturbations in the
tip position, unmodelled dynamics in the inner loop, and changes in the payload. The second type of
perturbation happens because of our particular control structure, which assumes that the response of the
motor position loop is instantaneous compared to the response of the outer loop, while in reality there is
always a delay (time constant of inner loop dynamics).

An analytical comparative study of the three methods was carried out in Section 7. Expressions
obtained there demonstrated that Scheme 3 is the scheme less sensitive to all the disturbances. Then
follows Scheme 2, and Scheme 1 is the most sensitive. The results of this section can be summarized as:

" When the system only has one vibrational mode, all three schemes are equivalent.

" Having fixed the closed-loop dominant poles, the sensitivity characteristic of Scheme 3 may be
considerably improved by placing the secondary closed-loop poles as far away as possible from the
origin.

" Secondary poles of Scheme 2 are fixed, a disadvantage compared with Scheme 3.

" Scheme 2 exhibits the worst characteristic of the three schemes at high frequencies.

" Secondary poles may be moved in Scheme 1, but not arbitrarily placed (as in Scheme 3). Inde-
pendently of where they are placed, Scheme 1 presents worse performance at low frequencies than
Scheme 2.

All these methods have been applied to a class of very slender flexible arms. These arms could be
moved very fast, but the effects of friction are important and should be considered. Since, the coupling
torque is relatively small, the design of the inner loop is simple (when designing the controllers, the current
nccdcd to decouple the motor from the beam was not taken into account in the saturation condition for the
current of the motor). This allowed us to obtain a very fast response of the inner loop. These techniques
were applied to two of these arms, one that had only one vibrational mode and was minimum phase,
and other that had two vibrational modes and was non-minimum phase, with satisfactory results. The
designed controllers were simple and provided fast and precise motion of the tip.

Finally, these control schemes are general, and can be applied to heavier flexible arms. However, in
this case (depending on the dimension of the motor), the compensation in the inner loop for the coupling
between the motor and the beam will be large. This will make the design of controllers for this loop more
complex and the assumption of M(s) = 1 will not hold, making necessary corrections in the feedforward
(Subsubsection 5.2.3.) and feedback terms.
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figure 1: Proposed general control scheme

I.T

Figure 2: Standard controller for flexible arms (optimum controller)

Figure 3: Scheme of Figure 2 expressed in terms of transfer functions
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Figure 5: Closed-loop motor position response using coupling torque Compensation,~
and a Coulomb friction compensation of ±O wips. (single-mass beam)
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Figure 6: Closed-loop motor position response using coupling torque compensation.

and a Coulomb friction compensation of ±0.09766 amps. (single-mass beam)
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Figure 7: Closed-loop motor position response using coupling torque compensation,

and a Coulomb friction compensation of ±0.1172 amps. (single-mass beam)
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Figure 8: Closed-loop motor position response using coupling torque compensation,
and a Coulomb friction compensation of ±0.127 amps. (single-mass beam)
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Figure 9: Closed-loop motor position response using coupling torque compensation,
and a Coulomb friction compensation of ±0.1318 amps. (single-mass beam)
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Figure 10: Closed-loop motor position response using coupling torque compensation,
and a Coulomb friction compensation of ±0.1367 amps. (single-mass beam)
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Figure 13: Closed-loop motor position response using coupling torque compensation, a Coulomb
friction compensation of ±0.132 amps., and a limit of 2 mrad. (single-mass beam)
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Figure 14: Closed-loop motor position response using coupling torque compensation,
but not Coulomb friction compensation (single-mass beam)II
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Figure 14: Closed-loop motor position response using a Coulomb friction compensation of ,0.132 amps.
with a limit of 2 mrad., but not coupling torque compensation (single-mass beam)
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Figure 16: Magnitude of the frequency responses of the exact and approximate decoupling
(expression (32)) in the two-mass beam

Ui'n (Aea

are.

Figure 17: Closed-loop motor position response using Coulomb friction compensation of
±0.132 amps. with a limit of 2 mrad., and motor-beam decoupling (expression (32))
(two-mass beam)
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Figure 19: Closed-loop motor position response using Coulomb friction compensation of
±0.132 aps. with a limit of 2 mrad., and exact motor-beam decoupling
obtained by using (30) and the SeIspot camera (two-mass bean')
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Figure 21: Discretization and reconstruction of the angle of the motor
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Figure 22: Simplified computer control scheme
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Figure 23: Optimization scheme for the fecdforward controller
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Figure 24: Simplified feedforward scheme
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Figure 25: Parabolic and quasi-parabolic trajectories
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Figure 27: Control scheme cancelling the first vibration mode
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Figure 29: Feedforward signal in the single-mass arm case, having
neglected motor loop dynamics
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Figure 31: Feedforward signal in the single-mass arm case, taking into account motor
loop dynamics
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Figure 32: Tip response of the single-mass arm using the first control scheme
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Figure 33: Tip and motor position in the single-mass arm case, using the first control
scheme

Figure 34: Second control scheme in the case of the single-mass ann
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Figure 35: Tip response of the single-mass arm using the second control scheme
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Figure 36: Tip and motor position in the single-mass arm case, using the second
control scheme
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Figure 37: Motor position compared with its reference in the single-mass arm case,

using the second control scheme
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Figure 38: Quasi-parabolic trajectory aaid optimized tip position reference in the
two-mass arm case
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Figure 39: Implementation of the simplified feedforward term in the two-mass arm case
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Figure 40: Tip response of the two-mass arm using the first control scheme
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Figure 41: Motor and tip position in the two-mass arm case, using the first control scheme

W output of 4(Z)
Output of R(z

AA-A

Figure 42: Comparison between the feedforward signal and the signal generated by the

feedback controller in the two-mass arm case, using the first control scheme
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Figure 43: Implementation of the second control scheme in the two-mass arm case
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Figure 44: Tip response of the two-mass arm using the second control scheme
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Figure 45: Tip and middle mass position in the two-mass arm case using the second

control scheme
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Figure 46: Motor and tip position in the two-mass arm case, using the second control scheme

61



motor reference (9,,,I experimental angle of the motor (0,.)

V ,tip reference (02,)

AW

Figure 47: Comparison of the actual and the commanded motor position of the two-mass
arm using the second control scheme
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Figure 48: Feedforward signal for the two-mass arm in the second control scheme
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Figure 49: References for the different angles of the two-mass arm using the third

control scheme
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Figure 50: Tip response of the two-mass arm using the third control scheme

Z a's

02m(t) v

40

amw 

en w

02(t))

ASO 01(t))
LOS

Figure 52: Motor, middle-mass, and tip position in the two-mass arm case, using the
third control scheme
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Figure 54: Normalized second control scheme
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Figure 56: Motor disturbance applied to the first control scheme

6-.

C4

1O.Iog(- t)

.20.00 45.00 -10.00 ..0 -10.00 15.00 20.00

-40.004 0. 00

Figure 57: Characteristic that compares sensitivities of schemes 1 and 2 to
unmodelled motor loop dynamics in the single-mass arm case
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Figure 58: Characteristics that compare rejection properties to motor position perturbations
of schemes I and 2, and 1 and 3 respectively, in the case of the two-mass arm
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Figure 59: Characteristic that compares sensitivities of schemes I and 3 to changes

in the tip mass, in the two-mass arm case
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